Stock Market Performance Prediction: A Comparative Study Between Econometric Models and Artificial Intelligence-Based Models
Prédiction de la performance boursière, une étude comparative entre modélisations économétriques et modélisations basées sur l’intelligence artificielle
Manel Labidi,
Ying Zhang (),
Matthieu Petit Guillaume () and
Aurélien Krauth ()
Additional contact information
Manel Labidi: LEVIATAN
Ying Zhang: LEVIATAN
Matthieu Petit Guillaume: BH - Beyond Horizon - BH - Beyond Horizon
Aurélien Krauth: LEVIATAN
Post-Print from HAL
Abstract:
In this article, we present a comparative study of the performance of econometric models (Mundlak model and GEE-Logit model) and artificial intelligence based models, such as stacking model and ensemble model integrating XG-Boost and LightGBM, as well as deep learning models (LSTM, GRU, Transformer-based encoder-decoder, TCN) in a classification task of listed securities into underperfor- ming and outperforming stocks, with a one-year investment horizon. We use annual historical data from 2019 to 2021. The results show that a stacking classification model out-performs the other models and offers a better balance between the true positive rate (70%) and the true negative rate (67%).
Keywords: Long Short-Term Memory; Gestion de portefeuilles décision d'investissement eXtreme Gradient Boosting Long Short-Term Memory Light Gradient Boosting Gated Recurrent Unit Temporal Convolutional Network modèle à pile modèle GEE-Logit modèle de Mundlak Portfolio management investment decision eXtreme Gradient Boosting Long Short-Term Memory Light Gradient Boosting Gated Recurrent Unit Temporal Convolutional Network stacking model GEE-Logit model Mundlak model 1. Autoregressive moving-average model 2. Autoregressive Integrated Moving Average model 3. Autoregressive Conditional Heteroskedasticity model 4. Generalized AutoRegressive Conditional Heteroskedasticity model; Gestion de portefeuilles; décision d'investissement; eXtreme Gradient Boosting; Light Gradient Boosting; Mundlak model 1. Autoregressive moving-average model 2. Autoregressive Integrated Moving Average model 3. Autoregressive Conditional Heteroskedasticity model 4. Generalized AutoRegressive Conditional Heteroskedasticity model; GEE-Logit model; stacking model; investment decision; modèle de Mundlak Portfolio management; modèle GEE-Logit; modèle à pile; Temporal Convolutional Network; Gated Recurrent Unit (search for similar items in EconPapers)
Date: 2025-07-02
Note: View the original document on HAL open archive server: https://hal.science/hal-05168124v1
References: Add references at CitEc
Citations:
Published in Conférence Nationale en Intelligence Artificielle (CNIA), Conférence Nationale en Intelligence Artificielle (CNIA), Jul 2025, Dijon, France
Downloads: (external link)
https://hal.science/hal-05168124v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05168124
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().