Using Clustering Methods to Enhance Data Representativeness: Toward a Well-Being Indicator for Corsican Municipalities
Ghinevra Comiti,
Paul-Antoine Bisgambiglia (),
Nathalie Lameta (),
Morgane Millet (),
Graziella Luisi and
Paul-Antoine Bisgambiglia
Additional contact information
Paul-Antoine Bisgambiglia: SPE - Laboratoire « Sciences pour l’Environnement » (UMR CNRS 6134 SPE) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli], Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Nathalie Lameta: Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Paul-Antoine Bisgambiglia: SPE - Laboratoire « Sciences pour l’Environnement » (UMR CNRS 6134 SPE) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli], Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Post-Print from HAL
Abstract:
Are indicators based primarily on economic data sufficient to represent a region's quality of life? This study aims to develop a well-being indicator for Corsican municipalities to assist decision-makers. Traditional indices like Gross Domestic Product (GDP) and the Human Development Index (HDI) have limitations, often overlooking regional factors, as quality of life is deeply influenced by local territory, social context, and cultural background. Thus, developing indicators at the municipal level is crucial to better reflect local conditions and support decision-making in smaller communities. In this study, we use machine learning to enhance data collection and apply clustering methods to group municipalities with similar characteristics, thereby optimizing sampling efforts. We compare three popular clustering algorithms: Affinity Propagation, K-means, and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Our approach reduces the 360 Corsican municipalities to four distinct groups, each sharing key quality-of-life attributes. We discuss our data collection process, the performance of the clustering algorithms, and potential future research directions.
Keywords: Multivariate Analysis; Quality of Life; Indicators Survey; Functional clustering; Community Well-Being (search for similar items in EconPapers)
Date: 2025-08-09
References: Add references at CitEc
Citations:
Published in Computational Science and Computational Intelligence, 2509, Springer Nature Switzerland; Springer Nature Switzerland, pp.111-121, 2025, Communications in Computer and Information Science, ⟨10.1007/978-3-031-94953-1_10⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05390439
DOI: 10.1007/978-3-031-94953-1_10
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().