Testing Hypotheses on the Innovations Distribution in Semi-Parametric Conditional Volatility Models
Christian Francq () and
Jean-Michel Zakoïan
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Jean-Michel Zakoïan: CREST - Centre de Recherche en Economie et Statistique [Bruz] - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique, IP Paris - Institut Polytechnique de Paris
Post-Print from HAL
Abstract:
Abstract Testing symmetry or quantile assumptions on the innovations distribution can be of invaluable help to improve or simplify the statistical procedures designed for GARCH-type models. In particular, evaluation of the conditional value-at-risk (VaR) or construction of confidence intervals for predictions requires estimating quantiles of the innovations distribution. We propose tests of different hypotheses: adequacy of a set of parametric quantiles, mean–median equality, symmetry of extreme quantiles, and zero-median in presence of a conditional mean. The tests rely on the asymptotic distribution of the empirical distribution function of the residuals. They are generally model-free (though not estimation-free) and thus are simple to implement. Efficiency comparisons are made using the Bahadur approach. Numerical studies based on simulated and real data are provided to illustrate the usefulness of the proposed tests for risk management or statistical purposes.
Date: 2023-12-15
References: Add references at CitEc
Citations:
Published in Journal of Financial Econometrics, 2023, 21 (5), pp.1443-1482. ⟨10.1093/jjfinec/nbac011⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05417201
DOI: 10.1093/jjfinec/nbac011
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().