Optimal estimating function for weak location‐scale dynamic models
Christian Francq () and
Jean‐michel Zakoïan
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Jean‐michel Zakoïan: CREST - Centre de Recherche en Economie et Statistique [Bruz] - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique, IP Paris - Institut Polytechnique de Paris
Post-Print from HAL
Abstract:
Estimating functions provide a very general framework for the statistical inference of dynamic models under weak assumptions. We consider a class of time series models consisting in the parametrization of the first two conditional moments which – by contrast with classical location‐scale dynamic models – do not impose further constraints on the conditional distribution/moments. Quasi‐likelihood estimators (QLE) are obtained by solving estimating equations deduced from those two conditional moments. Conditions ensuring the existence and asymptotic properties (consistency and asymptotic normality) of such estimators are provided. We propose optimal QLEs in Godambe's sense, deduced from a condition obtained by Chandra and Taniguchi (2001, Annals of the Institute of Statistical Mathematics 53, 125–141). The particular case of the quasi‐maximum likelihood estimators is considered. For pure location models, a data‐driven procedure for optimally choosing the QLE is proposed. Our results are illustrated via Monte Carlo experiments and real financial data.
Date: 2023-03-26
References: Add references at CitEc
Citations:
Published in Journal of Time Series Analysis, 2023, 44 (5-6), pp.533-555. ⟨10.1111/jtsa.12684⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05417208
DOI: 10.1111/jtsa.12684
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().