EconPapers    
Economics at your fingertips  
 

Estimating Multivariate Volatility Models Equation by Equation

Christian Francq () and Jean-Michel Zakoïan
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Jean-Michel Zakoïan: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Summary The paper investigates the estimation of a wide class of multivariate volatility models. Instead of estimating an m-multivariate volatility model, a much simpler and numerically efficient method consists in estimating m univariate generalized auto-regressive conditional heteroscedasticity type models equation by equation in the first step, and a correlation matrix in the second step. Strong consistency and asymptotic normality of the equation-by-equation estimator are established in a very general framework, including dynamic conditional correlation models. The equation-by-equation estimator can be used to test the restrictions imposed by a particular multivariate generalized auto-regressive conditional heteroscedasticity specification. For general constant conditional correlation models, we obtain the consistency and asymptotic normality of the two-step estimator. Comparisons with the global method, in which the model parameters are estimated in one step, are provided. Monte Carlo experiments and applications to financial series illustrate the interest of the approach.

Date: 2016-06-01
References: Add references at CitEc
Citations:

Published in Journal of the Royal Statistical Society: Series B, 2016, 78 (3), pp.613-635. ⟨10.1111/rssb.12126⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05417324

DOI: 10.1111/rssb.12126

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-12-23
Handle: RePEc:hal:journl:hal-05417324