Optimal Predictions of Powers of Conditionally Heteroscedastic Processes
Christian Francq () and
Jean-Michel Zakoïan
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Jean-Michel Zakoïan: LFA - Laboratoire de Finance Assurance - Centre de Recherche en Économie et Statistique (CREST) - GENES - Groupe des Écoles Nationales d'Économie et Statistique, EQUIPPE - Economie Quantitative, Intégration, Politiques Publiques et Econométrie - Université de Lille, Sciences et Technologies - Université de Lille, Sciences Humaines et Sociales - PRES Université Lille Nord de France - Université de Lille, Droit et Santé
Post-Print from HAL
Abstract:
Summary In conditionally heteroscedastic models, the optimal prediction of powers, or logarithms, of the absolute value has a simple expression in terms of the volatility and an expectation involving the independent process. A natural procedure for estimating this prediction is to estimate the volatility in the first step, for instance by Gaussian quasi-maximum-likelihood or by least absolute deviations, and to use empirical means based on rescaled innovations to estimate the expectation in the second step. The paper proposes an alternative one-step procedure, based on an appropriate non-Gaussian quasi-maximum-likelihood estimator, and establishes the asymptotic properties of the two approaches. Asymptotic comparisons and numerical experiments show that the differences in accuracy can be important, depending on the prediction problem and the innovations distribution. An application to indices of major stock exchanges is given.
Date: 2013-03-01
References: Add references at CitEc
Citations:
Published in Journal of the Royal Statistical Society: Series B, 2013, 75 (2), pp.345-367. ⟨10.1111/j.1467-9868.2012.01045.x⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05417520
DOI: 10.1111/j.1467-9868.2012.01045.x
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().