Linear‐representation Based Estimation of Stochastic Volatility Models
Christian Francq () and
Jean‐michel Zakoïan
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - Groupe ENSAE-ENSAI - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - Groupe ENSAE-ENSAI - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Jean‐michel Zakoïan: CREST - Centre de Recherche en Economie et Statistique [Bruz] - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - Groupe ENSAE-ENSAI - Groupe des Écoles Nationales d'Économie et Statistique, IP Paris - Institut Polytechnique de Paris
Post-Print from HAL
Abstract:
Abstract. A new way of estimating stochastic volatility models is developed. The method is based on the existence of autoregressive moving average (ARMA) representations for powers of the log‐squared observations. These representations allow to build a criterion obtained by weighting the sums of squared innovations corresponding to the different ARMA models. The estimator obtained by minimizing the criterion with respect to the parameters of interest is shown to be consistent and asymptotically normal. Monte‐Carlo experiments illustrate the finite sample properties of the estimator. The method has potential applications to other non‐linear time‐series models.
Date: 2006-01-30
References: Add references at CitEc
Citations:
Published in Scandinavian Journal of Statistics, 2006, 33 (4), pp.785-806. ⟨10.1111/j.1467-9469.2006.00495.x⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05431364
DOI: 10.1111/j.1467-9469.2006.00495.x
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().