Large sample properties of parameter least squares estimates for time‐varying arma models
Christian Francq () and
Antony Gautier
Additional contact information
Christian Francq: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - Groupe ENSAE-ENSAI - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - Groupe ENSAE-ENSAI - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Post-Print from HAL
Abstract:
Abstract. This paper considers estimation of ARMA models with time‐varying coefficients. The ARMA parameters belong to d different regimes. The changes in regime occur at irregular time intervals. Consistency and asymptotic normality of least squares and quasi‐generalized least squares estimators are shown.
Date: 2004-07-27
References: Add references at CitEc
Citations:
Published in Journal of Time Series Analysis, 2004, 25 (5), pp.765-783. ⟨10.1111/j.1467-9892.2004.02003.x⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05431374
DOI: 10.1111/j.1467-9892.2004.02003.x
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().