EconPapers    
Economics at your fingertips  
 

Organizational learning for exploring Generative AI: CORE-sandbox experiments

Dov Te’eni, Myriam Raymond (), Frantz Rowe (), Etienne Thénoz () and Philippe Trimborn ()
Additional contact information
Dov Te’eni: TAU - Tel Aviv University
Myriam Raymond: LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université, GRANEM - Groupe de Recherche Angevin en Economie et Management - UA - Université d'Angers - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement
Frantz Rowe: LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université, IUF - Institut universitaire de France - M.E.N.E.S.R. - Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche
Etienne Thénoz: LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université

Post-Print from HAL

Abstract: Generative AI (GenAI) holds potential for organizations, offering transformative opportunities while simultaneously raising concerns about its associated risks. Like many emerging technologies, GenAI presents organizations with a significant challenge: navigating uncertainty before making large-scale decisions about which systems to adopt and how to implement and leverage them. Managers cannot rely solely on general knowledge of GenAI; they require insights tailored to their specific organizational context. Drawing on an 18-month study of sandbox experiments conducted within a large international service organization, this paper presents CORE-sandbox experiments as a structured framework for systematically learning about the critical dimensions of uncertainty surrounding GenAI. The framework organizes learning into four key domains: Capabilities, Opportunities, Risks, and Ecosystem. The paper also advances the discourse on organizational learning and dynamic capabilities by demonstrating how in-situ and ex-situ learning cycles reinforce one another and how second and third-order organizational learning emerge under conditions of high uncertainty before GenAI rollout decisions are made.

Keywords: Uncertainty; Risks; Business opportunities; Service organizations; Sandbox experiments; Organizational learning; Generative AI (search for similar items in EconPapers)
Date: 2026-04
Note: View the original document on HAL open archive server: https://nantes-universite.hal.science/hal-05461433v1
References: Add references at CitEc
Citations:

Published in International Journal of Information Management, 2026, 87, pp.103029. ⟨10.1016/j.ijinfomgt.2026.103029⟩

Downloads: (external link)
https://nantes-universite.hal.science/hal-05461433v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05461433

DOI: 10.1016/j.ijinfomgt.2026.103029

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2026-01-20
Handle: RePEc:hal:journl:hal-05461433