De-noising with wavelets method in chaotic time series: application in climatology, energy and finance
Dominique Guegan () and
Kebira Hoummyia
Additional contact information
Dominique Guegan: IDHE - Institutions et Dynamiques Historiques de l'Economie - ENS Cachan - École normale supérieure - Cachan - UP1 - Université Paris 1 Panthéon-Sorbonne - UP8 - Université Paris 8 Vincennes-Saint-Denis - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique
Kebira Hoummyia: IDHE - Institutions et Dynamiques Historiques de l'Economie - ENS Cachan - École normale supérieure - Cachan - UP1 - Université Paris 1 Panthéon-Sorbonne - UP8 - Université Paris 8 Vincennes-Saint-Denis - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
In this paper, we compre the time fresuency deconvolution method with the wavelets method. We apply our results on several dynamical systems and show the capability of the wavelet's method to reconstruct the attractor of a chaotic time series? We de-noise different data sets in order to rebuilt their attractor using the wavelets method. Tha applications concern temperatures, wind fluctuations, electricity spot prices and exchange rates.
Keywords: Chaos; deconvolution; meteorology -returns (search for similar items in EconPapers)
Date: 2005
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00180873
References: Add references at CitEc
Citations:
Published in Proceedings of SPIE, the International Society for Optical Engineering, 2005, 5848, pp.174 - 185
Downloads: (external link)
https://shs.hal.science/halshs-00180873/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00180873
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().