Statistical estimation of the Embedding Dimension of a dynamical system
D. Boscq,
Dominique Guegan () and
Guillaume Léorat
Additional contact information
D. Boscq: ISUP - Institut de Statistique de Sorbonne Université - SU - Sorbonne Université
Dominique Guegan: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Guillaume Léorat: SLP Infoware - SLP Infoware
Post-Print from HAL
Abstract:
We consider a dynamical ergodic system defined as:Xt=ù(Xt-1,..., Xt-m0)where m0 is supposed to be unknown. X1,..., Xn being observed, we construct and study an estimate of m0 based on X1,..., XN, using the fact that m0 is a breaking point for the regularity of the distribution of (Xt-1,..., Xt-m0), m=1, 2,.... We present some simulations to illustrate our method and we discuss the computing problems.
Keywords: Embedding Dimension; dynamical system (search for similar items in EconPapers)
Date: 1999-04
References: Add references at CitEc
Citations:
Published in International journal of bifurcation and chaos in applied sciences and engineering , 1999, 9 (4), pp.645 - 656. ⟨10.1142/S0218127499000456⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00194421
DOI: 10.1142/S0218127499000456
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().