A comparison of techniques of estimation in long-memory processes
Luisa Bisaglia and
Dominique Guegan ()
Additional contact information
Luisa Bisaglia: Departement of Statistics - Unipd - Università degli Studi di Padova = University of Padua
Dominique Guegan: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
In this paper we discuss the properties of most important estimators of long-range dependence parameters. We compare the properties of these estimators via Monte Carlo experiments. We give an empirical approach for confidence intervals for the different parameter estimates. We then apply these procedures to a real time series to investigate its long-memory properties.
Keywords: Fractional Gaussian noise; Fractional ARIMA (p; q) processes; Estimation; Long-range dependence (search for similar items in EconPapers)
Date: 1998-03
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Published in Computational Statistics and Data Analysis, 1998, 27 (1), pp.61-81. ⟨10.1016/S0167-9473(97)00045-5⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00194462
DOI: 10.1016/S0167-9473(97)00045-5
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().