Consistent estimation to determine the embedding dimension in financial data
Dominique Guegan () and
Guillaume Léorat
Additional contact information
Dominique Guegan: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
To detect chaos on observational data, we first need to know the embedding dimension. We propose a consistent approach to estimate this dimension using the theoretical work of Bosq and Guégan (1994) and we apply the results to real financial data.
Keywords: Of; Correlation; Dynamical; Systems; Embedding; Dimension; Kernel; Estimates; Lyapunov; Exponents; Non-PARAMETRIC; Estimation (search for similar items in EconPapers)
Date: 1997-09
References: Add references at CitEc
Citations:
Published in European Journal of Finance, 1997, 3 (3), pp.231 - 242. ⟨10.1080/135184797337453⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00194487
DOI: 10.1080/135184797337453
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().