EconPapers    
Economics at your fingertips  
 

Convergence en loi de Dirichlet de certaines intégrales stochastiques

Christophe Chorro ()
Additional contact information
Christophe Chorro: CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Recently, Nicolas Bouleau has proposed an extension of the Donsker's invariance principle in the framework of Dirichlet forms. He proves that an erroneous random walk of i.i.d random variables converges in Dirichlet law toward the Ornstein-Uhlenbeck error structure on the Wiener space [4]. The aim of this paper is to extend this result to some families of stochastic integrals.

Keywords: errors; vectorial domain; squared field operator; Dirichlet forms; stochastic integrals; Invariance principle; Principe d'invariance; opérateur carré du champ; domaine vectoriel; formes de Dirichlet; intégrales stochastiques; erreurs (search for similar items in EconPapers)
Date: 2005-04
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00194673
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in 2005

Downloads: (external link)
https://shs.hal.science/halshs-00194673/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00194673

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-00194673