Convergence en loi de Dirichlet de certaines intégrales stochastiques
Christophe Chorro ()
Additional contact information
Christophe Chorro: CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Recently, Nicolas Bouleau has proposed an extension of the Donsker's invariance principle in the framework of Dirichlet forms. He proves that an erroneous random walk of i.i.d random variables converges in Dirichlet law toward the Ornstein-Uhlenbeck error structure on the Wiener space [4]. The aim of this paper is to extend this result to some families of stochastic integrals.
Keywords: errors; vectorial domain; squared field operator; Dirichlet forms; stochastic integrals; Invariance principle; Principe d'invariance; opérateur carré du champ; domaine vectoriel; formes de Dirichlet; intégrales stochastiques; erreurs (search for similar items in EconPapers)
Date: 2005-04
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00194673
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in 2005
Downloads: (external link)
https://shs.hal.science/halshs-00194673/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00194673
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().