Robust tests for heteroscedasticity in a general framework
Marie Lebreton and
Anne Peguin-Feissolle ()
Additional contact information
Marie Lebreton: GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique
Anne Peguin-Feissolle: GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
In this paper, we suggest two heteroscedasticity tests that require little knowledge of the functional relationship determining the variance. The first one is based on a Taylor series expansion of the unknown scedastic function and the second one is based on artificial neural networks. These tests are easy to apply and perform well in our small-sample simulations, but they possess asymptotically incorrect sizes except in the case of normal errors. Therefore, we propose a simple modification in order to correct this non-robustness property. We investigate the size and the power of these tests by Monte Carlo experiments by comparing them to well-known heteroscedasticity tests.
Keywords: heteroscedasticity (search for similar items in EconPapers)
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Published in Annales d'Economie et de Statistique, 2007, 85, pp.159-187. ⟨10.2307/20079184⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00390142
DOI: 10.2307/20079184
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().