Detrending Persistent Predictors
Christophe Boucher (christophe.boucher@univ-paris1.fr) and
Bertrand Maillet (bertrand.maillet3@gmail.com)
Additional contact information
Christophe Boucher: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, A.A.Advisors-QCG - ABN AMRO
Bertrand Maillet: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, A.A.Advisors-QCG - ABN AMRO, EIF - Europlace Institute of Finance
Post-Print from HAL
Abstract:
Researchers in finance very often rely on highly persistent - nearly integrated - explanatory variables to predict returns. This paper proposes to stand up to the usual problem of persistent regressor bias, by detrending the highly auto-correlated predictors. We find that the statistical evidence of out-of-sample predictability of stock returns is stronger, once predictors are adjusted for high persistence.
Keywords: Forecasting; persistence; detrending; expected returns.; Prévision; persistance; extraction de tendance; rendements espérés. (search for similar items in EconPapers)
Date: 2011-03
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00587775
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in 2011
Downloads: (external link)
https://shs.hal.science/halshs-00587775/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00587775
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).