Factor ARMA representation of a Markov process
Serge Darolles (),
Jean-Pierre Florens () and
Christian Gourieroux
Additional contact information
Serge Darolles: DRM-Finance - DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Jean-Pierre Florens: GREMAQ - Groupe de recherche en économie mathématique et quantitative - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique
Christian Gourieroux: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We decompose a stationary Markov process (Xt) as a linear combination of ARMA. These decompositions are deduced from a nonlinear canonical decomposition of the joint distribution of (Xt, Xt−1).
Keywords: Markov process; Reversibility; Dynamic factors; Nonlinear; Canonical analysis (search for similar items in EconPapers)
Date: 2001-06-01
References: Add references at CitEc
Citations:
Published in Economics Letters, 2001, 71 (2), pp.165-171. ⟨10.1016/S0165-1765(01)00367-6⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00678224
DOI: 10.1016/S0165-1765(01)00367-6
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().