EconPapers    
Economics at your fingertips  
 

Kadanoff Sand Pile Model, Avalanche Structure and Wave Shape

Kévin Perrot () and Eric Rémila
Additional contact information
Kévin Perrot: LIP - Laboratoire de l'Informatique du Parallélisme - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lyon - CNRS - Centre National de la Recherche Scientifique, Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3 - Laboratoire I3S - MDSC - Modèles Discrets pour les Systèmes Complexes - I3S - Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis - UNS - Université Nice Sophia Antipolis (1965 - 2019) - CNRS - Centre National de la Recherche Scientifique - UniCA - Université Côte d'Azur

Post-Print from HAL

Abstract: Sand pile models are dynamical systems describing the evolution from NN stacked grains to a stable configuration. It uses local rules to depict grain moves and iterate it until reaching a fixed configuration from which no rule can be applied. Physicists L. Kadanoff et al. inspire KSPM, extending the well known Sand Pile Model (SPM). In KSPM(DD), we start from a pile of NN stacked grains and apply the rule: D−1D−1 grains can fall from column ii onto columns i+1,i+2,...,i+D−1i+1,i+2,...,i+D−1 if the difference of height between columns ii and i+1i+1 is greater or equal to DD. Toward the study of fixed points (stable configurations on which no grain can move) obtained from NN stacked grains, we propose an iterative study of KSPM evolution consisting in the repeated addition of one grain on a heap of sand, triggering an avalanche at each iteration. We develop a formal background for the study of avalanches, resumed in a finite state word transducer, and explain how this transducer may be used to predict the form of fixed points. Further precise developments provide a plain formula for fixed points of KSPM(3), showing the emergence of a wavy shape.

Keywords: Discrete dynamical system; Self-organized criticality; Sand pile model; Fixed point; Transducer (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Published in Theoretical Computer Science, 2013, 504, pp.52-72. ⟨10.1016/j.tcs.2013.01.033⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00949239

DOI: 10.1016/j.tcs.2013.01.033

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-00949239