On integer-valued means and the symmetric maximum
Miguel Couceiro () and
Michel Grabisch
Additional contact information
Miguel Couceiro: ORPAILLEUR - Knowledge representation, reasonning - Centre Inria de l'Université de Lorraine - Inria - Institut National de Recherche en Informatique et en Automatique - LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery - LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications - Inria - Institut National de Recherche en Informatique et en Automatique - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Integer-valued means, satisfying the decomposability condition of Kolmogoroff/Nagumo, are necessarily extremal, i.e., the mean value depends only on the minimal and maximal inputs. To overcome this severe limitation, we propose an infinite family of (weak) integer means based on the symmetric maximum and computation rules. For such means, their value depends not only on extremal inputs, but also on 2nd, 3rd, etc…, extremal values as needed. In particular, we show that this family can be characterized by a weak version of decomposability.
Keywords: integer means; nonassociative algebra; symmetric maximum; decomposability; moyenne sue les entiers; algèbre non associative; décomposabilité (search for similar items in EconPapers)
Date: 2016-09
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01412025v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in 2016
Downloads: (external link)
https://shs.hal.science/halshs-01412025v1/document (application/pdf)
Related works:
Working Paper: On integer-valued means and the symmetric maximum (2016) 
Working Paper: On integer-valued means and the symmetric maximum (2016) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-01412025
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().