EconPapers    
Economics at your fingertips  
 

Credit Risk Analysis using Machine and Deep Learning Models

Dominique Guegan ()
Additional contact information
Dominique Guegan: UP1 - Université Paris 1 Panthéon-Sorbonne, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne, University of Ca’ Foscari [Venice, Italy]

Post-Print from HAL

Abstract: Due to the hyper technology associated to Big Data, data availability and computing power, most banks or lending financial institutions are renewing their business models. Credit risk predictions, monitoring, model reliability and effective loan processing are key to decision making and transparency. In this work, we build binary classifiers based on machine and deep learning models on real data in predicting loan default probability. The top 10 important features from these models are selected and then used in the modelling process to test the stability of binary classifiers by comparing performance on separate data. We observe that tree-based models are more stable than models based on multilayer artificial neural networks. This opens several questions relative to the intensive used of deep learning systems in the enterprises.

Date: 2019-01-18
References: Add references at CitEc
Citations:

Published in Credit Risk Analysis Using Machine and Deep Learning Models, Università degli Studi di Padova, Jan 2019, Padoue, Italy

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-02125631

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-02125631