EconPapers    
Economics at your fingertips  
 

Compact Distributed Certification of Planar Graphs

Laurent Feuilloley (), Pierre Fraigniaud (), Pedro Montealegre (), Ivan Rapaport, Éric Rémila () and Ioan Todinca
Additional contact information
Laurent Feuilloley: UCHILE - Universidad de Chile = University of Chile [Santiago]
Pierre Fraigniaud: IRIF (UMR_8243) - Institut de Recherche en Informatique Fondamentale - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Pedro Montealegre: Universidad Adolfo Ibáñez [Santiago]
Ivan Rapaport: CMM - Centre de modélisation mathématique / Centro de Modelamiento Matemático [Santiago] - UCHILE - Universidad de Chile = University of Chile [Santiago] - CNRS - Centre National de la Recherche Scientifique
Éric Rémila: GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique
Ioan Todinca: LIFO - Laboratoire d'Informatique Fondamentale d'Orléans - UO - Université d'Orléans - INSA CVL - Institut National des Sciences Appliquées - Centre Val de Loire - INSA - Institut National des Sciences Appliquées

Post-Print from HAL

Abstract: Naor, Parter, and Yogev (SODA 2020) have recently demonstrated the existence of a distributed interactive proof for planarity (i.e., for certifying that a network is planar), using a sophisticated generic technique for constructing distributed IP protocols based on sequential IP protocols. The interactive proof for planarity is based on a distributed certification of the correct execution of any given sequential linear-time algorithm for planarity testing. It involves three interactions between the prover and the randomized distributed verifier (i.e., it is a dMAM protocol), and uses small certificates, on O(log n) bits in n-node networks. We show that a single interaction from the prover suffices, and randomization is unecessary, by providing an explicit description of a proof-labeling scheme for planarity, still using certificates on just O(log n) bits. We also show that there are no proof-labeling schemes-in fact, even no locally checkable proofs-for planarity using certificates on o(log n) bits.

Date: 2020-08-03
New Economics Papers: this item is included in nep-net
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02991868v1
References: View complete reference list from CitEc
Citations:

Published in 39th ACM Symposium on Principles of Distributed Computing, Aug 2020, Virtual Event Italy, Italy. pp.319-328, ⟨10.1145/3382734.3404505⟩

Downloads: (external link)
https://shs.hal.science/halshs-02991868v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-02991868

DOI: 10.1145/3382734.3404505

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-02991868