EconPapers    
Economics at your fingertips  
 

Biases on variances estimated on large data-sets

François Gardes ()
Additional contact information
François Gardes: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, EGEI - Éthique et Gouvernance de l’Entreprise et des Institutions - UCO - Université Catholique de l'Ouest

Post-Print from HAL

Abstract: The inverse dependency of the estimated variances over the sample size throws a fundamental question on the validity of the usual statistical methodology, since any hypothesis on the value of a coefficient can be tested negatively by increasing the size of the data-set. I suppose that large data-sets are characterized by a concentration of information on homogenous sub-populations, a spatial autocorrelation of the error terms and the covariates may bias the estimation of variances. Using the corrections of variances under spatial autocorrelation, we obtain variances comparable to an estimation on sub-samples (named efficient sub-samples) the sizes of which are sufficient to contain the information which gives rise to similar estimates to those obtained on the whole population. Moreover, the estimation on efficient data-sets does not necessitate the specification of the spatial autocorrelations which are supposed to bias the estimated variances.

Keywords: dataset; estimated variance; spatial autocorrelation; grouped observations (search for similar items in EconPapers)
Date: 2021-03
New Economics Papers: this item is included in nep-cwa and nep-isf
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03325118v1
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in 2021

Downloads: (external link)
https://shs.hal.science/halshs-03325118v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-03325118

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-03325118