Centrality measures in networks
Francis Bloch (),
Matthew Jackson and
Pietro Tebaldi
Additional contact information
Francis Bloch: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Pietro Tebaldi: CUMC - Columbia University Medical Center - Columbia University [New York], NBER - National Bureau of Economic Research [New York] - NBER - The National Bureau of Economic Research
Post-Print from HAL
Abstract:
We show that prominent centrality measures in network analysis are all based on additively separable and linear treatments of statistics that capture a node's position in the network. This enables us to provide a taxonomy of centrality measures that distills them to varying on two dimensions: (i) which information they make use of about nodes' positions, and (ii) how that information is weighted as a function of distance from the node in question. The three sorts of information about nodes' positions that are usually used—which we refer to as "nodal statistics"—are the paths from a given node to other nodes, the walks from a given node to other nodes, and the geodesics between other nodes that include a given node. Using such statistics on nodes' positions, we also characterize the types of trees such that centrality measures all agree, and we also discuss the properties that identify some path-based centrality measures.
Date: 2023-04
References: Add references at CitEc
Citations:
Published in Social Choice and Welfare, 2023, ⟨10.1007/s00355-023-01456-4⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Journal Article: Centrality measures in networks (2023) 
Working Paper: Centrality measures in networks (2023)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-04155088
DOI: 10.1007/s00355-023-01456-4
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().