EconPapers    
Economics at your fingertips  
 

A time-space integro-differential economic model of epidemic control

Carmen Camacho (), Rodolphe Desbordes and Davide La Torre
Additional contact information
Carmen Camacho: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Rodolphe Desbordes: SKEMA Business School - SKEMA Business School
Davide La Torre: SKEMA Business School - SKEMA Business School

Post-Print from HAL

Abstract: In this paper we propose a time-space economic model to control the evolution and the spread of a disease. The underlying epidemiological model is formulated as a reaction-diffusion integro-differential partial differential equation. This specific model formulation, supported by empirical data, contains three different terms: a pure diffusion term, a linear growth term, and an integral term. These three terms capture different diffusion channels of a transmissible disease: a local diffusion effect, a temporal effect, and a global diffusion effect. The decision maker aims at deciding the optimal effort to be implemented in order to control the number of infections and, at the same time, minimize the cost of treatment. We analyze the finite horizon case in detail and we provide the closed-form expression of the optimal policy to be implemented to control the epidemic while sustaining economic growth. We also propose two different extensions: The first one considers an infinite horizon model while, the second one, is related to a multi-period framework.

Keywords: Epidemics; Macroeconomic outcomes; Mitigation policies (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Published in Economic Theory, 2024, 77, pp.307-348. ⟨10.1007/s00199-023-01506-z⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-04331140

DOI: 10.1007/s00199-023-01506-z

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-04331140