Scientific consulting enables compatibility between AI & human potential:How a Bank fights ML & CFT
Jocelyne Boulos Eid (),
Marc Bonnet and
Jérémy Clément Salmeron ()
Additional contact information
Jocelyne Boulos Eid: MAGELLAN - Laboratoire de Recherche Magellan - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - Institut d'Administration des Entreprises (IAE) - Lyon, ISEOR - Institut de Socio-économie des Entreprises et des ORganisations - Institut de socio-économie des entreprises et des organisations
Marc Bonnet: MAGELLAN - Laboratoire de Recherche Magellan - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - Institut d'Administration des Entreprises (IAE) - Lyon, ISEOR - Institut de Socio-économie des Entreprises et des ORganisations - Institut de socio-économie des entreprises et des organisations
Jérémy Clément Salmeron: ISEOR - Institut de Socio-économie des Entreprises et des ORganisations - Institut de socio-économie des entreprises et des organisations, MAGELLAN - Laboratoire de Recherche Magellan - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - Institut d'Administration des Entreprises (IAE) - Lyon
Post-Print from HAL
Abstract:
Money laundering (ML) has been affecting the global economy for many years and treating its security. ML encompasses illegal activities that are used to make illegally acquired funds appear legitimate. Banks are in the front line of the fight against ML and Counter Finance Terrorism (CFT). They should acquire monitoring software, manage controls and experts practices. This paper aims to share the mechanism put in place to ensure the implementation of a monitoring system that incorporate Artificial Intelligence (AI) to detect suspicious transactions. The choice for the case study is a Private Bank in the Middle East. The intervention research project comprises of valuing the impact of implementing a socio-economic management consultancy method to synchronize the internal control departments human potential to sustain FATF recommendations for monitoring software (FATF, 2012). This anticipated improvement in performance would increase the AI solution return on investment thus ensuring compliance and sustainability of the Bank.
Date: 2021-08
References: Add references at CitEc
Citations:
Published in Academy of Management Proceedings, 2021, 2021 (1), pp.12166. ⟨10.5465/AMBPP.2021.12166abstract⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-04708793
DOI: 10.5465/AMBPP.2021.12166abstract
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().