EconPapers    
Economics at your fingertips  
 

Yes-No look at the Shapley-Shubik index: Two new power indices from the Felsenthal and Machover bargaining model

Une analyse de l’indice de Shapley-Shubik lors des appels nominaux: Deux nouveaux indices de pouvoir issus du modèle de négociation de Felsenthal et Machover

Nicolas Andjiga, Hélène Ferrer (), Issofa Moyouwou and Fabrice Valognes ()
Additional contact information
Nicolas Andjiga: University of Yaoundé 1 = Université de Yaoundé I
Hélène Ferrer: CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique
Issofa Moyouwou: University of Yaoundé 1 = Université de Yaoundé I
Fabrice Valognes: CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: A comprehensive analysis of the Shapley-Shubik[13] index of voting power is provided through a detailed investigation of voters' pivotality in all possible rollcalls, as described in Felsenthal and Machover [4]. In a simple voting game, a pivotal voter in a roll-call is the one whose vote completely determines the final outcome, regardless of the votes of their successors. The present paper sheds new light on the Shapley-Shubik index of voting power by distinguishing between positive pivotality (for adoption) and negative pivotality (for rejection) which considerably strengthens their original result. This distinction has been first proposed by Hu [6] for the Shapley-Shubik power index and the Banzhaf index [1] to the case of "blocking". We go deeper into the analysis and show that the Shapley-Shubik index is a convex combination of two new indices we provide namely the positive pivotality index and the negative pivotality index. Finally, we present an axiomatic characterization for each of these two new indices by using two weighted versions of the classical transfer axiom developed by Dubey [3].

Keywords: Simple games; Shapley-Shubik index; roll call model; voting power; bargaining procedures; Jeux simples; indice de Shapley-Shubik; modèle d’appel nominal; pouvoir de vote; modèle de négociation (search for similar items in EconPapers)
Date: 2025
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-04948243v1
References: Add references at CitEc
Citations:

Published in Revue d'économie politique, 2025, 2025 (1), pp.55-73. ⟨10.3917/redp.351.0055⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-04948243

DOI: 10.3917/redp.351.0055

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-06-16
Handle: RePEc:hal:journl:halshs-04948243