EconPapers    
Economics at your fingertips  
 

Behavioral and computational signatures of reinforcement learning and confidence biases in gambling disorder

Monja Hoven (), Mael Lebreton () and Ruth van Holst
Additional contact information
Monja Hoven: UvA - Universiteit van Amsterdam = University of Amsterdam
Mael Lebreton: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - ENPC - École nationale des ponts et chaussées - IP Paris - Institut Polytechnique de Paris, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - ENPC - École nationale des ponts et chaussées - IP Paris - Institut Polytechnique de Paris, CISA - Swiss Center for Affective Sciences - UNIGE - Université de Genève = University of Geneva
Ruth van Holst: UvA - Universiteit van Amsterdam = University of Amsterdam

Post-Print from HAL

Abstract: Background and aims Gambling Disorder (GD) is associated with maladaptive decision-making, possibly driven by biases in learning and confidence judgments. While prior research report abnormal learning rates and heightened overconfidence in GD, the affected cognitive mechanism producing these joint deficits has so far remained unidentified. Our study aims to fill this gap using a recently established reinforcement learning (RL) experimental and computational framework linking learning processes, outcome-valence effects and confidence judgments. Methods We pre-registered and tested the hypotheses that GD patients exhibit increased (over)confidence and confirmatory learning bias, and increased outcome valence effects on choice accuracy and confidence judgements in in 18 participants with GD and 19 matched controls. Results While our findings replicated the main behavioral patterns of choices and confidence judgments, and confirmed their computational foundations, we did not find any group differences between the controls and patients with GD. Discussion and Conclusions The current findings speak to the inconsistent findings of abnormalities in confidence and learning in GD. Systematic research is necessary to better understand the influence of possibly mediating factors such as disorder-related idiosyncrasies (e.g. skill- vs chance-based preferences) to further clarify if, when and how confidence and learning are affected in people with GD.

Date: 2025-07
References: Add references at CitEc
Citations:

Published in Journal of Behavioral Addictions, 2025, 14 (2), pp.982-996. ⟨10.1556/2006.2025.00046⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-05163060

DOI: 10.1556/2006.2025.00046

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-07-22
Handle: RePEc:hal:journl:halshs-05163060