EconPapers    
Economics at your fingertips  
 

Infinite supermodularity and preferences

Alain Chateauneuf, Vassili Vergopoulos () and Jianbo Zhang
Additional contact information
Vassili Vergopoulos: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Jianbo Zhang: Department of economics, University of Kansas - KU - University of Kansas [Lawrence]

PSE-Ecole d'économie de Paris (Postprint) from HAL

Abstract: Chambers and Echenique (J Econ Theory 144:1004–1014, 2009) proved that preferences in a wide class cannot disentangle the usual economic assumptions of quasisupermodularity and supermodularity. This paper further studies the ordinal content of the much stronger assumption of infinite supermodularity in the same context. It is shown that weakly increasing binary relations on finite lattices fail to disentangle infinite supermodularity from quasisupermodularity and supermodularity. Moreover, for a complete preorder, the mild requirement of strict increasingness is shown to imply the existence of infinitely supermodular representations.

Keywords: Supermodularity; Infinite supermodularity; Lattice (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

Published in Economic Theory, 2016, pp.1-11. ⟨10.1007/s00199-015-0942-3⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Infinite supermodularity and preferences (2017) Downloads
Working Paper: Infinite supermodularity and preferences (2016)
Working Paper: Infinite supermodularity and preferences (2016)
Working Paper: Infinite Supermodularity and Preferences (2015) Downloads
Chapter: Infinite Supermodularity and Preferences Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:pseptp:hal-01302555

DOI: 10.1007/s00199-015-0942-3

Access Statistics for this paper

More papers in PSE-Ecole d'économie de Paris (Postprint) from HAL
Bibliographic data for series maintained by Caroline Bauer ().

 
Page updated 2025-03-19
Handle: RePEc:hal:pseptp:hal-01302555