Subvector inference when the true parameter vector may be near or at the boundary
Philipp Ketz
PSE-Ecole d'économie de Paris (Postprint) from HAL
Abstract:
Extremum estimators are not asymptotically normally distributed when the estimator satisfies the restrictions on the parameter space—such as the non-negativity of a variance parameter—and the true parameter vector is near or at the boundary. This possible lack of asymptotic normality makes it difficult to construct tests for testing subvector hypotheses that control asymptotic size in a uniform sense and have good local asymptotic power irrespective of whether the true parameter vector is at, near, or far from the boundary. We propose a novel estimator that is asymptotically normally distributed even when the true parameter vector is near or at the boundary and the objective function is not defined outside the parameter space. The proposed estimator allows the implementation of a new test based on the Conditional Likelihood Ratio statistic that is easy-to-implement, controls asymptotic size, and has good local asymptotic power properties. Furthermore, we show that the test enjoys certain asymptotic optimality properties when the parameter of interest is scalar. In an application of the random coefficients logit model (Berry, Levinsohn, and Pakes, 1995) to the European car market, we find that, for most parameters, the new test leads to tighter confidence intervals than the two-sided t-test commonly used in practice.
Date: 2018-09
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Published in Journal of Econometrics, 2018, ⟨10.1016/j.jeconom.2018.08.003⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Journal Article: Subvector inference when the true parameter vector may be near or at the boundary (2018) 
Working Paper: Subvector inference when the true parameter vector may be near or at the boundary (2018)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:pseptp:halshs-01884381
DOI: 10.1016/j.jeconom.2018.08.003
Access Statistics for this paper
More papers in PSE-Ecole d'économie de Paris (Postprint) from HAL
Bibliographic data for series maintained by Caroline Bauer ().