Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money
Mohammad Akbarpour (),
Julien Combe,
YingHua He,
Victor Hiller,
Robert Shimer and
Olivier Tercieux ()
Additional contact information
Mohammad Akbarpour: Stanford University
Olivier Tercieux: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
PSE-Ecole d'économie de Paris (Postprint) from HAL
Abstract:
We propose a new matching algorithm -- Unpaired kidney exchange -- to tackle the problem of double coincidence of wants without using money. The fundamental idea is that "memory" can serve as a medium of exchange. In a dynamic matching model with heterogeneous agents, we prove that average waiting time under the Unpaired algorithm is close to optimal, substantially less than the standard pairwise and chain exchange algorithms. We evaluate this algorithm using a rich dataset of kidney patients in France. Counterfactual simulations show that the Unpaired algorithm can match 57% of the patients, with an average waiting time of 440 days (state-of-the-art algorithms match about 34% with an average waiting time of 695 days). The optimal algorithm, which is practically infeasible, performs only slightly better: it matches 58% of the patients and leads to an average waiting time of 426 days. The Unpaired algorithm confronts two incentive-related practical challenges. We address those challenges via a modified version of the Unpaired algorithm that employs kidneys from the deceased donors waiting list. It can match 86% of the patients, while reducing the average waiting time to about 155 days.
Date: 2020-07
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Published in EC '20: Proceedings of the 21st ACM Conference on Economics and Computation, ACM, pp.465-466, 2020, 978-1-4503-7975-5. ⟨10.1145/3391403.3399485⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: UNPAIRED KIDNEY EXCHANGE: OVERCOMING DOUBLE COINCIDENCE OF WANTS WITHOUT MONEY (2022) 
Working Paper: Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money (2020) 
Working Paper: Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money (2020)
Working Paper: Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money (2020)
Working Paper: Unpaired Kidney Exchange: Overcoming Double Coincidence of Wants without Money (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:pseptp:halshs-02973042
DOI: 10.1145/3391403.3399485
Access Statistics for this paper
More papers in PSE-Ecole d'économie de Paris (Postprint) from HAL
Bibliographic data for series maintained by Caroline Bauer ().