EconPapers    
Economics at your fingertips  
 

Consensus and Disagreement: Information Aggregation under (Not So) Naive Learning

Abhijit Banerjee and Olivier Compte ()
Additional contact information
Olivier Compte: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

PSE-Ecole d'économie de Paris (Postprint) from HAL

Abstract: We explore a model of non-Bayesian information aggregation in networks. Agents noncooperatively choose among Friedkin-Johnsen-type aggregation rules to maximize payoffs. The DeGroot rule is chosen in equilibrium if and only if there is noiseless information transmission, leading to consensus. With noisy transmission, while some disagreement is inevitable, the optimal choice of rule amplifies the disagreement: even with little noise, individuals place substantial weight on their own initial opinion in every period, exacerbating the disagreement. We use this framework to think about equilibrium versus socially efficient choice of rules and its connection to polarization of opinions across groups.

Date: 2024-08
References: Add references at CitEc
Citations:

Published in Journal of Political Economy, 2024, 132 (8), pp.2790-2829. ⟨10.1086/729448⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Consensus and Disagreement: Information Aggregation under (Not So) Naive Learning (2024) Downloads
Working Paper: Consensus and Disagreement: Information Aggregation under (Not So) Naive Learning (2024)
Working Paper: Consensus and Disagreement: Information Aggregation under (not so) Naive Learning (2023) Downloads
Working Paper: Consensus and Disagreement: Information Aggregation under (not so) Naive Learning (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:pseptp:halshs-04806668

DOI: 10.1086/729448

Access Statistics for this paper

More papers in PSE-Ecole d'économie de Paris (Postprint) from HAL
Bibliographic data for series maintained by Caroline Bauer ().

 
Page updated 2025-03-23
Handle: RePEc:hal:pseptp:halshs-04806668