Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends
Benjamin Jourdain () and
Michel Vellekoop
Additional contact information
Benjamin Jourdain: CERMICS - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique - Inria - Institut National de Recherche en Informatique et en Automatique - ENPC - École nationale des ponts et chaussées, MATHRISK - Mathematical Risk handling - Inria Paris-Rocquencourt - Inria - Institut National de Recherche en Informatique et en Automatique - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées
Michel Vellekoop: ASE - Amsterdam School of Economics - UvA - University of Amsterdam [Amsterdam] = Universiteit van Amsterdam
Working Papers from HAL
Abstract:
We analyze the regularity of the optimal exercise boundary for the American Put option when the underlying asset pays a discrete dividend at a known time $t_d$ during the lifetime of the option. The ex-dividend asset price process is assumed to follow Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. The solution to the associated optimal stopping problem can be characterised in terms of an optimal exercise boundary which, in contrast to the case when there are no dividends, may no longer be monotone. In this paper we prove that when the dividend function is positive and concave, then the boundary is non-increasing in a left-hand neighbourhood of $t_d$, and tends to $0$ as time tends to $t_d^-$ with a speed that we can characterize. When the dividend function is linear in a neighbourhood of zero, then we show continuity of the exercise boundary and a high contact principle in the left-hand neighbourhood of $t_d$. When it is globally linear, then right-continuity of the boundary and the high contact principle are proved to hold globally. Finally, we show how all the previous results can be extended to multiple dividend payment dates in that case.
Date: 2009-11-26
Note: View the original document on HAL open archive server: https://hal.science/hal-00436327v2
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-00436327v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00436327
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().