Forward equations for option prices in semimartingale models
Amel Bentata () and
Rama Cont ()
Additional contact information
Amel Bentata: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Rama Cont: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We derive a forward partial integro-differential equation for prices of call options in a model where the dynamics of the underlying asset under the pricing measure is described by a -possibly discontinuous- semimartingale. This result generalizes Dupire's forward equation to a large class of non-Markovian models with jumps and allows to retrieve various forward equations previously obtained for option prices in a unified framework.
Date: 2009
Note: View the original document on HAL open archive server: https://hal.science/hal-00445641v3
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://hal.science/hal-00445641v3/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00445641
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().