Optimal trading algorithms and selfsimilar processes: a p-variation approach
Mauricio Labadie () and
Charles-Albert Lehalle
Additional contact information
Mauricio Labadie: CAMS - Centre d'Analyse et de Mathématique sociales - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
Almgren and Chriss ("Optimal execution of portfolio transactions", Journal of Risk, Vol. 3, No. 2, 2010, pp. 5-39) and Lehalle ("Rigorous strategic trading: balanced portfolio and mean reversion", Journal of Trading, Summer 2009, pp. 40-46.) developed optimal trading algorithms for assets and portfolios driven by a brownian motion. More recently, Gatheral and Schied ("Optimal trade execution under geometric brownian motion in the Almgren and Chriss framework", Working paper SSRN, August 2010) addressed the same problem for the geometric brownian motion. In this article we extend these ideas for assets and portfolios driven by a discrete version of a selfsimilar process of exponent H in (0,1), which can be either a fractional brownian motion of Hurst exponent H or a truncated Lévy distribution of index 1/H. The cost functional we use is not the classical expectation-variance one: instead of the variance, we use the p-variation, i.e. the Lp equivalent of the variance. We find explicitly the trading algorithm for any p>1 and compare the resulting trading curve (that we call p-curve) with the classical expectation-variance curve (the 2-curve). If p2 then the p-curve is above the 2-curve at the beginning of the execution and below at the end. Therefore, this pattern minimizes the market impact. We also show that the value of p in the p-variation is related to the exponent H of selfsimilarity via p=1/H. In consequence, one can find the right value of p to put into the trading algorithm by calibrating the exponent H via real time series. We believe this result is interesting applications for high-frecuency trading.
Date: 2010-12-10
Note: View the original document on HAL open archive server: https://hal.science/hal-00546145
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-00546145/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00546145
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().