EconPapers    
Economics at your fingertips  
 

Large Deviation Theory and the Distribution of Price Changes

Laurent Calvet, Benoît Mandelbrot and Adlai Fisher

Working Papers from HAL

Abstract: The Multifractal Model of Asset Returns ("MMAR," see Mandelbrot, Fisher, and Calvet, 1997) proposes a class of multifractal processes for the modelling of financial returns. In that paper, multifractal processes are defined by a scaling law for moments of the processes' increments over finite time intervals. In the present paper, we discuss the local behavior of multifractal processes. We employ local Holder exponents, a fundamental concept in real analysis that describes the local scaling properties of a realized path at any point in time. In contrast with the standard models of continuous time finance, multifractal processes contain a multiplicity of local Holder exponents within any finite time interval. We characterize the distribution of Holder exponents by the multifractal spectrum of the process. For a broad class of multifractal processes, this distribution can be obtained by an application of Cramer's Large Deviation Theory. In an alternative interpretation, the multifractal spectrum describes the fractal dimension of the set of points having a given local Holder exponent. Finally, we show how to obtain processes with varied spectra. This allows the applied researcher to relate an empirical estimate of the multifractal spectrum back to a particular construction of the Stochastic process.

Keywords: multifractal spectrum; compound stochastic process; Multifractal model of asset returns; subordinated stochastic process; time deformation; scaling laws; self-similarity; self-affinity (search for similar items in EconPapers)
Date: 2011-06-21
References: Add references at CitEc
Citations:

Published in 2011

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00601869

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-00601869