EconPapers    
Economics at your fingertips  
 

Existence of optimal controls for stochastic Volterra equations

Andrés Cárdenas, Sergio Pulido () and Rafael Serrano ()
Additional contact information
Andrés Cárdenas: Universidad del Rosario [Bogota]
Sergio Pulido: ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise, LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Working Papers from HAL

Abstract: We provide sufficient conditions that guarantee the existence of relaxed optimal controls in the weak formulation of control problems for stochastic Volterra equations (SVEs). Our study can be applied to rough processes which arise when the kernel appearing in the controlled SVE is singular at zero. The proof of existence of relaxed optimal policies relies on the interaction between integrability hypotheses on the kernel, growth conditions on the running cost functional and on the coefficients of the controlled SVEs, and certain compactness properties of the class of Young measures on Suslin metrizable control sets. Under classical convexity assumptions, we also deduce the existence of optimal strict controls.

Keywords: stochastic Volterra equations; rough processes; relaxed control; Young measures; tightness; weak formulation (search for similar items in EconPapers)
Date: 2022-07-11
Note: View the original document on HAL open archive server: https://hal.science/hal-03720342v1
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-03720342v1/document (application/pdf)

Related works:
Working Paper: Existence of optimal controls for stochastic Volterra equations (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-03720342

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-31
Handle: RePEc:hal:wpaper:hal-03720342