An optimal transport approach for the multiple quantile hedging problem
Cyril Bénézet (),
Jean-François Chassagneux () and
Mohan Yang ()
Additional contact information
Cyril Bénézet: ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise, LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Jean-François Chassagneux: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité, UPCité - Université Paris Cité
Mohan Yang: ADIA - Abu Dhabi Investment Authority
Working Papers from HAL
Abstract:
We consider the multiple quantile hedging problem, which is a class of partial hedging problems containing as special examples the quantile hedging problem (Föllmer & Leukert 1999) and the PnL matching problem (introduced in Bouchard & Vu 2012). In complete non-linear markets, we show that the problem can be reformulated as a kind of Monge optimal transport problem. Using this observation, we introduce a Kantorovitch version of the problem and prove that the value of both problems coincide. In the linear case, we thus obtain that the multiple quantile hedging problem can be seen as a semi-discrete optimal transport problem, for which we further introduce the dual problem. We then prove that there is no duality gap, allowing us to design a numerical method based on SGA algorithms to compute the multiple quantile hedging price.
Date: 2023-08-01
Note: View the original document on HAL open archive server: https://hal.science/hal-04175061v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-04175061v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04175061
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().