Path Shadowing Monte-Carlo
Rudy Morel (),
Stéphane Mallat and
Jean-Philippe Bouchaud
Additional contact information
Rudy Morel: LIENS - Laboratoire d'informatique de l'école normale supérieure - DI-ENS - Département d'informatique - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - CNRS - Centre National de la Recherche Scientifique
Stéphane Mallat: CdF (institution) - Collège de France
Jean-Philippe Bouchaud: CFM - Capital Fund Management
Working Papers from HAL
Abstract:
We introduce a Path Shadowing Monte-Carlo method, which provides prediction of future paths, given any generative model. At any given date, it averages future quantities over generated price paths whose past history matches, or `shadows', the actual (observed) history. We test our approach using paths generated from a maximum entropy model of financial prices, based on a recently proposed multi-scale analogue of the standard skewness and kurtosis called `Scattering Spectra'. This model promotes diversity of generated paths while reproducing the main statistical properties of financial prices, including stylized facts on volatility roughness. Our method yields state-of-the-art predictions for future realized volatility and allows one to determine conditional option smiles for the S\&P500 that outperform both the current version of the Path-Dependent Volatility model and the option market itself.
Keywords: Volatility prediction; Option pricing; Wavelets (search for similar items in EconPapers)
Date: 2023-08-06
Note: View the original document on HAL open archive server: https://hal.science/hal-04177835v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-04177835v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04177835
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().