EconPapers    
Economics at your fingertips  
 

Robustness of the evaluation of indirect costs of natural disasters: example of the ARIO model

Samuel Juhel (), Adrien Delahais and Vincent Viguie ()
Additional contact information
Samuel Juhel: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique, LMD - Laboratoire de Météorologie Dynamique (UMR 8539) - INSU - CNRS - Institut national des sciences de l'Univers - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENPC - École nationale des ponts et chaussées - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - Département des Géosciences - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres
Adrien Delahais: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique
Vincent Viguie: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: Given the interconnectedness of economies and the prevalence of just-in-time production processes, even small interruptions to production caused by natural disasters can lead to great indirect economic impacts. A substantial body of literature on this subject exists, notably with the help of input-output analysis, CGE and agent-based models. However, such models rely on parameters and data which are often unobserved empirically or estimated with wide margins of uncertainty. The reliability of the models is therefore difficult to assess. Here, taking the example of the July 2021 floods in Germany, we analyze to what extent the results of the ARIO model are robust to input data and parameter choices. ARIO model is a widely used model in the literature, and has laid theoretical foundations for several other models. We conduct a sensitivity analysis by varying its key parameters, as well as the multi-regional input output tables which it uses as its main input data. For this, we develop a new resource-efficient Python implementation of the ARIO model, which enables a large number of simulations to be run. Our results show that the choice of the data source and parameters indeed heavily influences the outputs of the model. To ensure the robustness of their results, future studies on indirect economic impacts should incorporate several scenarios and employ data from various sources.

Keywords: Indirect economic risk; Input-Output models; Natural disasters (search for similar items in EconPapers)
Date: 2023-10-11
Note: View the original document on HAL open archive server: https://hal.science/hal-04196749v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-04196749v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04196749

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-04196749