Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS
Christian Bongiorno () and
Damien Challet
Additional contact information
Christian Bongiorno: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay
Working Papers from HAL
Abstract:
The Average Oracle, a simple and very fast covariance filtering method, is shown to yield superior Sharpe ratios than the current state-of-the-art (and complex) methods, Dynamic Conditional Covariance coupled to Non-Linear Shrinkage (DCC+NLS). We pit all the known variants of DCC+NLS (quadratic shrinkage, gross-leverage or turnover limitations, and factor-augmented NLS) against the Average Oracle in large-scale randomized experiments. We find generically that while some variants of DCC+NLS sometimes yield the lowest average realized volatility, albeit with a small improvement, their excessive gross leverage and investment concentration, and their 10-time larger turnover contribute to smaller average portfolio returns, which mechanically result in smaller realized Sharpe ratios than the Average Oracle. We also provide simple analytical arguments about the origin of the advantage of the Average Oracle over NLS in a changing world.
Date: 2023-12-05
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Journal Article: Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS (2024) 
Working Paper: Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04323624
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().