EconPapers    
Economics at your fingertips  
 

Functional Ecological Inference

Christian Bontemps (), Jean-Pierre Florens and Nour Meddahi
Additional contact information
Christian Bontemps: ENAC-LAB - Laboratoire de recherche ENAC - ENAC - Ecole Nationale de l'Aviation Civile, TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Jean-Pierre Florens: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Nour Meddahi: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Working Papers from HAL

Abstract: In this paper we consider the problem of ecological inference when one observes the conditional distributions of Y |W and Z|W from aggregate data and wants to infer the conditional distribution of Y |Z without observing Y and Z in the same sample. First, we show that this problem can be transformed into a linear equation involving operators for which, under suitable regularity assumptions, least squares solutions are available. Then we propose to use the least squares solution with the minimum Hilbert-Schmidt norm, which in our context can be structurally interpreted as the solution with minimum dependence between Y and Z. Interestingly, in the case where the conditioning variable W is discrete and belongs to a finite set, such as the labels of units/groups/cities, the solution of this minimal dependence has a closed form. In the more general case, we use a regularization scheme and show the convergence of our proposed estimator. A numerical evaluation of our procedure is proposed.

Keywords: Ecological inference; Linear operator; Generalized inverse; Hilbert Schmidt norm; Regularization (search for similar items in EconPapers)
Date: 2024-09-25
Note: View the original document on HAL open archive server: https://hal.science/hal-04709684v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-04709684v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04709684

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-04709684