EconPapers    
Economics at your fingertips  
 

The Human Cost of DeepSeek

Antonio Casilli (), Thomas Le Bonniec and Julian Posada
Additional contact information
Antonio Casilli: I3 SES - Institut interdisciplinaire de l’innovation de Telecom Paris - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, NOS - Numérique, Organisation et Société - I3 SES - Institut interdisciplinaire de l’innovation de Telecom Paris - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Thomas Le Bonniec: I3 SES - Institut interdisciplinaire de l’innovation de Telecom Paris - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, NOS - Numérique, Organisation et Société - I3 SES - Institut interdisciplinaire de l’innovation de Telecom Paris - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, IP Paris - Institut Polytechnique de Paris
Julian Posada: Yale University [New Haven]

Working Papers from HAL

Abstract: China's AI sensation DeepSeek claims to match ChatGPT's capabilities for just 1% of the cost and a fraction of its energy consumption, marketing itself as an open-source alternative to US tech giants. Debates that focus on its technical prowess overlook a crucial factor in its success: government-subsidized data labor. Recent Chinese policies have aimed at creating sprawling data-annotation hubs in 'tier 3' cities, offering tax breaks and financial incentives to companies to sustain a vast workforce of low-wage data labelers. DeepSeek portrays these workers as expert researchers-even suggesting the CEO himself labels data-and claims a team of just 32 annotators. However, this version of events clashes with documented evidence and casts doubt on the startup's marketing narrative and technological claims. Similar to how ChatGPT's ambitious AGI prophecies were undermined by revelations of widespread human annotation networks, DeepSeek's miraculous cost and efficiency metrics may conceal less comfortable realities yet to be fully appreciated.

Keywords: AI; digital labor; data work; china; deepseek; openAI (search for similar items in EconPapers)
Date: 2025-02-05
Note: View the original document on HAL open archive server: https://hal.ip-paris.fr/hal-04952735v1
References: Add references at CitEc
Citations:

Published in 1 (1), DiPLab. 2025, pp.10

Downloads: (external link)
https://hal.ip-paris.fr/hal-04952735v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04952735

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:wpaper:hal-04952735