Martingale property and moment explosions in signature volatility models
Eduardo Abi Jaber,
Paul Gassiat () and
Dimitri Sotnikov ()
Additional contact information
Eduardo Abi Jaber: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Paul Gassiat: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, DMA - Département de Mathématiques et Applications - ENS-PSL (UMR8553) - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Dimitri Sotnikov: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, Engie Global Markets
Working Papers from HAL
Abstract:
We study the martingale property and moment explosions of a signature volatility model, where the volatility process of the log-price is given by a linear form of the signature of a time-extended Brownian motion. Excluding trivial cases, we demonstrate that the price process is a true martingale if and only if the order of the linear form is odd and a correlation parameter is negative. The proof involves a fine analysis of the explosion time of a signature stochastic differential equation. This result is of key practical relevance, as it highlights that, when used for approximation purposes, the linear combination of signature elements must be taken of odd order to preserve the martingale property. Once martingality is established, we also characterize the existence of higher moments of the price process in terms of a condition on a correlation parameter.
Keywords: Martingale property; Moment explosions; Stochastic volatility; Path signatures (search for similar items in EconPapers)
Date: 2025-03-20
Note: View the original document on HAL open archive server: https://hal.science/hal-04999502v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-04999502v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04999502
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().