EconPapers    
Economics at your fingertips  
 

From Glosten-Milgrom to the whole limit order book and applications to financial regulation

Weibing Huang (), Sergio Pulido (), Mathieu Rosenbaum (), Pamela Saliba () and Emmanouil Sfendourakis ()
Additional contact information
Weibing Huang: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Sergio Pulido: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise
Mathieu Rosenbaum: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Pamela Saliba: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanouil Sfendourakis: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: We build an agent-based model for the order book with three types of market participants: an informed trader, a noise trader and competitive market makers. Using a Glosten-Milgrom like approach, we are able to deduce the whole limit order book (bid-ask spread and volume available at each price) from the interactions between the different agents. More precisely, we obtain a link between efficient price dynamic, proportion of trades due to the noise trader, traded volume, bid-ask spread and equilibrium limit order book state. With this model, we provide a relevant tool for regulators and market platforms. We show for example that it allows us to forecast consequences of a tick size change on the microstructure of an asset. It also enables us to value quantitatively the queue position of a limit order in the book.

Keywords: market microstructure; limit order book; bid-ask spread; adverse selection; financial regulation; tick size; queue position valuation (search for similar items in EconPapers)
Date: 2025-04-01
Note: View the original document on HAL open archive server: https://hal.science/hal-05104768v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-05104768v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05104768

DOI: 10.48550/arXiv.1902.10743

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-06-17
Handle: RePEc:hal:wpaper:hal-05104768