Testing mean densities with an application to climate change in Vietnam
Camille Mondon,
Thi Huong Trinh,
Josep Antoni Martín-Fernández and
Christine Thomas-Agnan
Additional contact information
Camille Mondon: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thi Huong Trinh: Thuongmai University - Partenaires INRAE
Josep Antoni Martín-Fernández: UdG - Universitat de Girona = University of Girona
Christine Thomas-Agnan: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
Given samples of density functions on an interval (a, b) of R, categorized according to a factor variable, we aim to test the equality of their mean functions both overall and across the groups defined by the factor. While the Functional Analysis of Variance (FANOVA) methodology is well-established for functional data, its adaptation to density functions (DANOVA) is necessary due to their inherent constraints of positivity and unit integral. To accommodate these constraints, we naturally use Bayes spaces methodology by mapping the densities using the centered log-ratio transformation into the L^2_0 (a, b) space where we can use FANOVA techniques. Many traditional contrasts in FANOVA rely on squared differences and can be reinterpreted as squared distances between Bayes perturbations within the densities space. We illustrate our methodology on a dataset comprising daily maximum temperatures across Vietnamese provinces between 1987 and 2016. Within the context of climate change, we first investigate the existence of a non-zero temporal trend of the densities of daily maximum temperature over Vietnam and then examine whether there is any regional effect on these trends. Finally, we explore odds ratio based interpretations allowing to describe the trends more locally.
Keywords: Analysis of variance; Density data; Functional data; Log ratio; Odds ratio; Bayes spaces (search for similar items in EconPapers)
Date: 2025-07-03
Note: View the original document on HAL open archive server: https://hal.science/hal-05141841v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05141841v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05141841
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().