Determinants of On-Street Parking Demand: A Machine Learning Approach in the City of Lyon
Déterminants de la demande de stationnement sur rue: Une approche par Machine Learning sur la ville de Lyon
Edith Combes ()
Additional contact information
Edith Combes: LAET - Laboratoire Aménagement Économie Transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique, ENTPE - École Nationale des Travaux Publics de l'État - ENTPE - École Nationale des Travaux Publics de l'État - Ministère de l'Ecologie, du Développement Durable, des Transports et du Logement
Working Papers from HAL
Abstract:
Parking pricing is a central tool for urban access regulation policies. To assess the effectiveness of these measures, it is important to understand the determinants of parking demand, especially in the context of innovations in parking policy. This report explores the key issues related to urban parking, followed by a review of the literature on the determinants of parking choices. We then present the various databases used for this study. A supervised machine learning approach, the XgBoost algorithm, is applied to on-street parking payment transaction data from the city of Lyon to identify the spatial and temporal factors influencing parking duration. The modeling results will enhance understanding of the determinants of parking behavior, ultimately facilitating the evaluation of the new progressive pricing policy implemented by the city of Lyon in June 2024.
Keywords: XGBoost; Machine Learning; Demand; City of Lyon; On-street parking; Stationnement sur rue; Ville de Lyon; Demande (search for similar items in EconPapers)
Date: 2024-09-06
References: Add references at CitEc
Citations:
Published in Laboratoire aménagement économie transports (LAET); ENTPE. 2024
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05201274
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().