EconPapers    
Economics at your fingertips  
 

Experimental Evidence That AI-Managed Workers Tolerate Lower Pay Without Demotivation

Mengchen Dong, Levin Brinkmann, Omar Sherif, Shihan Wang, Xinyu Zhang, Jean-François Bonnefon and Iyad Rahwan ()
Additional contact information
Mengchen Dong: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Levin Brinkmann: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Omar Sherif: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Shihan Wang: Universiteit Utrecht / Utrecht University [Utrecht]
Xinyu Zhang: Universiteit Utrecht / Utrecht University [Utrecht]
Jean-François Bonnefon: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, TSM - Toulouse School of Management Research - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - CNRS - Centre National de la Recherche Scientifique - TSM - Toulouse School of Management - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse
Iyad Rahwan: Max Planck Institute for Human Development - Max-Planck-Gesellschaft

Working Papers from HAL

Abstract: Experimental evidence on worker responses to AI management remains mixed, partly due to limitations in experimental fidelity. We address these limitations with a customized workplace in the Minecraft platform, enabling high-resolution behavioral tracking of autonomous task execution, and ensuring that participants approach the task with well-formed expectations about their own competence. Workers (N = 382) completed repeated production tasks under either human, AI, or hybrid management. An AI manager trained on humandefined evaluation principles systematically assigned lower performance ratings and reduced wages by 40%, without adverse effects on worker motivation and sense of fairness. These effects were driven by a muted emotional response to AI evaluation, compared to evaluation by a human. The very features that make AI appear impartial may also facilitate silent exploitation, by suppressing the social reactions that normally constrain extractive practices in human-managed work.

Keywords: Peprint; Computers and Society; Human-Computer Interaction (search for similar items in EconPapers)
Date: 2025-08-29
Note: View the original document on HAL open archive server: https://hal.science/hal-05229276v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-05229276v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05229276

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-09-30
Handle: RePEc:hal:wpaper:hal-05229276