A Martingale approach to continuous Portfolio Optimization under CVaR like constraints
Jérôme Lelong (),
Véronique Maume-Deschamps () and
William Thevenot
Additional contact information
Jérôme Lelong: DAO - Données, Apprentissage et Optimisation - LJK - Laboratoire Jean Kuntzmann - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Véronique Maume-Deschamps: ICJ - Institut Camille Jordan - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique, PSPM - Probabilités, statistique, physique mathématique - ICJ - Institut Camille Jordan - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique
William Thevenot: ICJ - Institut Camille Jordan - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We study a continuous-time portfolio optimization problem under an explicit constraint on the Deviation Conditional Value-at-Risk (DCVaR), defined as the difference between the CVaR and the expected terminal wealth. While the mean-CVaR framework has been widely explored, its time-inconsistency complicates the use of dynamic programming. We follow the martingale approach in a complete market setting, as in Gao et al. [4], and extend it by retaining an explicit DCVaR constraint in the problem formulation. The optimal terminal wealth is obtained by solving a convex constrained minimization problem. This leads to a tractable and interpretable characterization of the optimal strategy.
Keywords: Deviation risk measures; Convex optimization; Stochastic control; Complete market; Martingale methods; Deviation Conditional Value-at-Risk (DCVaR); Conditional Value-at-Risk (CVaR); Portfolio optimization (search for similar items in EconPapers)
Date: 2025-09-25
Note: View the original document on HAL open archive server: https://hal.science/hal-05282684v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05282684v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05282684
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().