A Bayesian approach to the Machina paradox
Mateus Joffily () and
Thijs van de Laar ()
Additional contact information
Mateus Joffily: GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique
Thijs van de Laar: TU/e - Eindhoven University of Technology [Eindhoven]
Working Papers from HAL
Abstract:
Variants of the Ellsberg urn experiments introduced by Machina (Am. Econ. Rev., 99(1), 385-392, 2009) have challenged several prominent models of ambiguity aversion. We show that our Bayesian hierarchical model -originally developed to explain Ellsberg-type preferences -also captures the ambiguity preferences observed in Machina's reflection example. Our findings indicate that ambiguity aversion in both the Ellsberg and Machina paradoxes can be attributed to pessimistic prior beliefs about unobserved outcomes. Moreover, the model predicts an asymmetric pattern of preferences across intermediate payoff levels in the reflection example: ambiguity aversion is stronger when the intermediate payoff lies closer to the worst outcome, while the opposite holds for ambiguity-seeking preferences.
Keywords: Machina Paradox; Ambiguity Aversion; Bayesian Modeling (search for similar items in EconPapers)
Date: 2025-11-24
Note: View the original document on HAL open archive server: https://hal.science/hal-05379578v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05379578v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05379578
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().