Taxing and nudging to reduce carbon emissions: Results from an online shopping experiment
Stefan Ambec,
Henrik Andersson,
Stéphane Cezera,
Aysegul Kanay,
Benjamin Ouvrard,
Luca A. Panzone and
Sebastian Simon
Additional contact information
Stefan Ambec: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Henrik Andersson: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Stéphane Cezera: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Aysegul Kanay: UT2J - Université Toulouse - Jean Jaurès - Comue de Toulouse - Communauté d'universités et établissements de Toulouse
Benjamin Ouvrard: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Luca A. Panzone: University of Newcastle upon Tyne
Sebastian Simon: LIUM - Laboratoire d'Informatique de l'Université du Mans - UM - Le Mans Université
Working Papers from HAL
Abstract:
What can be done to reduce the carbon footprint of consumption? To answer this, we conducted an online shopping experiment that tested the effects of two policy tools: a carbon tax (at two levels) and a behavioral nudge in the form of a traffic light-style label indicating a product's carbon footprint (green for low, orange for medium, and red for high). To disentangle the tax's substitution effect from its income effect, we held consumers' purchasing power constant. We find that the tax alone significantly reduces the carbon footprint per euro spent but not per basket purchased, implying that the reduction is driven purely by the income effect. The label alone makes consumers buy fewer red products and more green products, although without reducing significantly their carbon footprint. We do find some substitution effect and a significant reduction of the carbon footprint per basket only when the tax is high enough and combined with the label. Next, we perform a welfare analysis grounded on a theoretical framework that accommodates for several assumptions about consumer's preferences and motivations. We estimate the loss of consumer's surplus from nudging consumers with the label. We also estimate the consumers' valuation of a ton of CO2 avoided when they care about their climate impact.
Keywords: Green label; Carbon footprint; Climate change; Moral; Behavior; Nudge; Carbon tax (search for similar items in EconPapers)
Date: 2025-12-05
Note: View the original document on HAL open archive server: https://hal.science/hal-05399831v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05399831v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05399831
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().